Aircraft Ground Energy Systems at Zurich Airport ## **Contents** | 1. | Introduction | 3 | |--|--|----------------------------------| | 2. | Zurich Airport Situation | 4 | | 3. | AGES Technical Description | 5 | | 3.1.
3.2.
3.3.
3.4.
3.5.
3.6. | General Pier A Pier B Pier E Electrical System Open Stands "Charlie" Electrical System Open Stands "Papa" | 5
6
8
9
12
13 | | 4. | System Operation | 15 | | 4.1.
4.2.
4.3. | Energy Source Aircraft Operation and Handling System Performance | 15
15
17 | | 5. | Regulatory Framework | 18 | | 5.1.
5.2.
5.3. | Environmental Regulations Aircraft APU Operational Restrictions Airline Operational Instructions | 18
18
19 | | 6. | Environmental Assessment | 20 | | 6.1.
6.2.
6.3. | AGES Benefits Airport Emissions Regional NO_2 concentrations | 20
20
21 | | 7. | Economics of the System | 23 | | 7.1.
7.2. | Aircraft Ground Energy System Aircraft APU | 23
24 | | 8. | Annex 1: Auxiliary Power Unit | 25 | | 8.1.
8.2.
8.3.
8.4.
8.5.
8.6. | Technical Issues APU Modes of Operation Aircraft and Airport Operational Issues related to APU Aircraft Type Aircraft Stand APU Emission Calculation Methodology | 25
26
27
27
28
29 | | 9. | Annex 2: Abbreviations | 30 | AGES at Zurich Airport Page 2 von 33 #### 1. Introduction Aircraft during ground times at airports require electrical energy (115/200 volts at 400 Hz) for flight systems and electrical consumers (lights, etc) and depending on the ambient conditions also pre-conditioned air (PCA) for heating or cooling of the cabin. Such energy can either be provided by the aircraft built-in APU (Auxiliary Power Unit) or typically by ground support equipment (GPU - Ground Power Unit, ACU - Air Climate Unit, mobile heating unit). In addition, fixed energy systems are installed and operated by the airport or its tenants (table 1). ## Table 1 Ways of providing energy to the aircraft during ground times Operation of aircraft APU with its low efficiency rate of 8-14% is subject to gaseous emissions and noise, thus often contributing significantly to the local air quality impacts and site noise impacts. To mitigate emissions and noise, fixed energy systems can be designed that provide electrical energy and pre-conditioned air to aircraft. This report looks at the specific Zurich Airport situation and the ground power support system installed at aircraft stands. While the focus is on the technical solution, operational, regulatory, environmental and economic aspects are qualified and quantified as well. AGES at Zurich Airport Page 3 von 33 ## 2. Zurich Airport Situation Given the stringent environmental legislation in Switzerland and the ambient air quality conditions in the area where Zurich Airport is located, the airport authority has started as early as 1990 to design and implement air quality mitigation plans. Such mitigation plans have always covered all sources at the airport, including the aircraft handling. Part of the ground handling is the ground power delivery to aircraft during their ground time. To this end, Zurich Airport provides both stationary 400 Hz and PCA at all hard stands and 400Hz at most recent open stands. In addition, Zurich Airport mandates the airlines to use the systems where available and serviceable. The general airport layout is depicted in Figure 1. Figure 1 Zurich Airport aircraft piers and hard stands: Piers E, A, B and open stands P, C, and G AGES at Zurich Airport Page 4 von 33 ## 3. AGES Technical Description #### 3.1. General Key to the schematic layout is the central provision of the energy (central 400Hz transformers and central chiller plants) with point of use hook ups. This setup with central ice storages prevents energy consumption for pre-conditioned air for large aircraft during peak time. The energy for PCA systems is usually produced during off-peak night hours and drawn from during daytime peak hours. The 400Hz electrical system is on demand usage from the public grid, even during peak hours. Heat supply comes from the district heating network, which is fed by the airport's own heating plant and serves also the buildings. Figure 2 Basic layout of aircraft ground energy systems (AGES) Reflecting the ambient and climate conditions of Zurich Airport, the systems for pre-conditioned air are designed for the following: Ambient conditions: Summer +31°C, 80% humidity Winter -11°C, 40% humidity Cabin conditions: Summer +26°C Winter +21°C Air Handling Unit: Outlet temp: Min: -2°C, max: +50°C Air Volume: Min: 2,000 m³/h; max: 10,000m³/h (Code F¹: 12,000m³/h) Pressure: Min: 8,000 Pa; max: 9,500 Pa (Code F: 11,000 Pa) AGES at Zurich Airport Page 5 von 33 ¹ ICAO Aerodrome Reference Code: https://www.skybrary.aero/index.php/ICAO_Aerodrome_Reference_Code #### 3.2. Pier A #### 3.2.1. Electrical System 400 Hz Pier A went into operation in 1985 and has a total of 17 stands for the handling of aircraft. When handling wide-body aircraft, the number of stands is limited to 13. Figure 3 Transformer (left) and control panel (right). The production is central with three rotating 50/400 Hz converters that are each switched on or off depending on the demand at the gates. The distribution to the individual gates is done via the 960 V grid. Each gate is equipped with a transformer, which contains one or two 90 KVA outlets, each with a 400Hz cable with plug. A specialty of the plant is the monitoring and control syste, which collects data of around 1,000 objects like motors, converters, valves, sensors, switches etc. This control system logs all operating events and system errors. All important data can be trended, analysed and evaluated. | | | Comments | |-------------------------|----|--------------| | Gates Pier A | 17 | Built 1985 | | Transformer Station | 3 | 3x300 KVA | | Distribution | | 960V / 400Hz | | Local Transformer Total | 17 | | | Cat. C | 4 | 90 KVA | | Cat. D, E | 13 | 120 KVA | Table 2 Technical and operational information 400 Hz Pier A #### 3.2.2. Pre-conditioned Air System The pre-conditioned air system for Pier A as it is today went into operation in 1998. Up to that time, air pressure compressors have been used for air-conditioning and main engine start. The system operates the same way as the one in pier E (see 3.4.2). Pier A offers one hose per gate for Code C aircraft and two hoses for Code D and E aircraft for air-conditioning. The air units have different capacities depending on the aircraft size Figure 4 Hose for pre-conditioned air at pier A. | | Amount | Capacity | |------------------------------------|--------|--------------------------| | Chiller (ammonium) | 2 | 2 x 475 KW | | Chiller Storage | 9 | | | Capacity | | 1,050 KW | | Stored Energy | | 4 MWh | | Heating Converter | 2 | 900 KW each | | Air Conditioning Units (two hoses) | 13 | 10,000 m ³ /h | | Heating capacity per unit | | 190 KW | | Cooling capacity per unit | | 225 KW | | Air Conditioning Units (one hose) | 4 | 5,000 m ³ /h | | Heating capacity per unit | | 80 KW | | Cooling capacity per unit | | 105 KW | Table 3 Technical data PCA Pier A AGES at Zurich Airport Page 7 von 33 #### 3.3. Pier B #### 3.3.1. Electrical System 400 Hz Pier B went into operation in 2011 and has a total of 9 stands for the handling of aircraft. When handling wide-body aircraft, the number of stands is limited to 6. The stands are fed by two power buses, each supplied by a transformer of 1000 KVA. There are three stands for aircraft of category C, five stands for aircraft of category C, D, E and one stand for aircraft of category C, D, E and F. According to their size, they are equipped with one, two or four 90 KVA transformers. | | | Comments | |---------------------|---------------|-----------------| | Gates Pier B | 9 | Built 2011 | | Transformer Station | 2 | 2x1000 KVA | | Distribution | 2 power buses | 230/400V / 50Hz | | Local Transformer | 16 | 16x90 KVA | Table 4 Technical and operational information 400 Hz Pier B #### 3.3.2. Pre-conditioned Air System All stands at Pier B are equipped with a pre-conditioned air system. Heating is provided by the district heating system of the airport. Therefore, each apron tower comprises a heat-exchanger. For cooling, there are two chillers and five ice storages. The chillers are usually working at night, loading the ice storages when there is practically no other consumption. The stored capacity can then be used during the day. The two chillers of 300 KW each, together with the ice-storages (capacity 2,400KWh), allow a peak load of 1,200KW during four hours. Figure 5 Hose for pre-conditioned air at pier B. | | Amount | Capacity | |------------------------------------|--------|------------------------------| | Chiller (R404A) | 2 | 2 x 300 KW | | Chiller Storage | 5 | | | Capacity | | 600 KW | | Stored Energy | | 2.4 MWh | | Air Conditioning Units (one hose) | 3 | 5,000m ³ /h | | Heating capacity per unit | | 80 KW | | Cooling capacity per unit | | 115 KW | | Air Conditioning Units (one hose) | 5 | 10,000m ³ /h | | Heating capacity per unit | | 1900 KW | | Cooling capacity per unit | | 225 KW | | Air Conditioning Units (two hoses) | 1 | Max. 14,000m ³ /h | | Heating capacity per unit | | Max. 201 KW | | Cooling capacity per unit | | Max. 329 KW | Table 5 Technical data PCA Pier B #### 3.4. Pier E #### 3.4.1. Electrical System 400 Hz Pier E was built in 2001, went into operation in 2003 and provides 27 gates for aircraft handling. Two gates are for aircraft Code D to F (360 KVA), 14 gates are for Codes D and E (180 KVA) and 11 gates for category C (90 KVA). The static converters are placed in the apron buildings. Depending on the stand size, one, two or four converters are available. The cable coils with 30 m cable are mounted underneath the passenger loading bridge. Figure 6 Cable and hose coils (left) and 400Hz transformers (right) The operation of the system can be done through the aircraft plug or the switch board on the passenger loading bridge. AGES at Zurich Airport The system contains a monitoring and control unit, which covers 1,650 objects. The system logs all operating events and system errors and all important data can be trended, analysed and evaluated. The gates are equipped with measurement systems for the electricity. Figure 7 400Hz monitoring panel | | | Comments | | |------------------------|----|-------------------------|--| | Gates Pier E | 27 | 2x 360 KVA | | | | | 14 x 180 KVA | | | | | 11 x 90 KVA | | | Transformer station | 2 | 2 x 1,600 KVA | | | | 1 | 1 x 700 KW (cooling) | | | Static converter 90KVA | 47 | Total capacity 4.23 MVA | | | Cable coils | 47 | | | Table 6 Technical and operational information 400 Hz Pier E Page 11 von 33 #### 3.4.2. Pre-conditioned Air System The air-conditioning units deliver warm or cold air to the aircraft fuselage depending on the requirements. The air units are placed on the apron and connected to the hose reels over a telescope pipe under the passenger loading bridges. Of the two gates for Code D to F aircraft, one has four and the other two hoses. The gates for Code D and E aircraft have two hoses, the gates for category C aircraft one. Figure 8 Hose for pre-conditioned air (left) and central PCA plant (right) The ice machines produce binary ice (flow-ice) during the night which is stored in the energy storage unit. During actual operations, the stored energy helps to break the peaks of daily operation. This results in lower energy capacity requirements as peak hour demand has not to be met. Also, binary ice requires smaller transport pipes as the latent energy can be used. Some gates provide metering systems to monitor heat and ice consumption of individual aircraft types. Figure 9 Chiller The heating and cooling energy is provided through two separate pipe systems at each gate. This enables to heat or cool aircraft at the same time. All relevant data are displayed in the control system for trending, analysis and evaluation. AGES at Zurich Airport Figure 10 Control panel for pre-conditioned air (left) and analysis chart. | | Amount | Capacity | |-------------------------------------|--------|-----------------------------| | Chiller (ammonium) | 3 | 3 x 410 KW | | Ice Storage | 1 | 220 m ³ | | Stored Energy | | 10,000 MWh | | Heating Transformer | 2 | 1,100 KW each | | Air Conditioning Units (four hoses) | 1 | 2x 10,000 m ³ /h | | Heating capacity per unit | | 1x 190 KW | | Cooling capacity per unit | | 1x 225 KW | | Air Conditioning Units (two hoses) | 15 | 12,000 m ³ /h | | Heating capacity per unit | | 190 KW | | Cooling capacity per unit | | 225 KW | | Air Conditioning Units (one hose) | 11 | 6,000 m ³ /h | | Heating capacity per unit | | 80 KW | | Cooling capacity per unit | | 105 KW | | | | | Table 7 Technical data PCA Pier E ## 3.5. Electrical System Open Stands "Charlie" Eight open stands on the tarmac-area "South", named C50 – C60, are equipped with stationary electrical systems. Five wide-body aircraft or eight narrow-body aircraft can be parked in the whole area. In total, there are five 50/400Hz converters with 180KVA each available. Three of them offer three plugs, from which only two can be used simultaneously. The other two converters are equipped with two plugs. | | | Comments | |-------------------|---|------------| | Open Stands C | 8 | Built 2011 | | Converter Station | 5 | 5x180 KVA | AGES at Zurich Airport Page 12 von 33 | Distribution | | 115/200 V / 400 Hz | |-------------------|----|--------------------| | Connection Cables | 13 | 13x90 KVA | Table 8 Technical data Open Stands "Charlie" Figure 11 400Hz system open stands "Charlie" #### 3.6. Electrical System Open Stands "Papa" North of pier E, there are located additional open stands. These are divided in a western and an eastern part. The western part accommodates two Code E and F aircraft or three aircraft Code C. The eastern part accommodates four aircraft Code C. All stands are equipped with stationary electrical systems. The western part comes with two converters of 2x180KVA, who are connected to three underground pits, one with 1x90 KVA and two with 2x90 KVA. The eastern part is equipped with four converters of 90 KVA, one for each stand. | | Comments | |---|------------| | 7 | Built 2014 | | 6 | 2x180KVA | | | 4x90KVA | | | 7
6 | Table 9 Technical Data Open Stands "Papa" AGES at Zurich Airport Page 13 von 33 Figure 12 400Hz system open stands "Papa" Eastern Part. Figure 13 400Hz pit system open stands "Papa" Western Part. AGES at Zurich Airport Page 14 von 33 ## 4. System Operation ## 4.1. Energy Source Heat energy is provided for all systems by the airport's central power plant. This energy plant is a combined heat and power co-generation plant, consisting of four boilers with two steam turbines and one gas turbine with a total heat capacity of 120 MW_{th} and 10 MW_{el} . The plant has been operated with 90% compressed natural gas (since 1998) and 10% heating oil (light). It supplies the whole airport with process energy and is optimised for operational and ecological parameters. Electrical energy is taken from the public grid through two independent transformer stations. #### 4.2. Aircraft Operation and Handling Operational procedures may vary from airport to airport. Aircraft in Zurich are handled on remote stands or on pier stands. On most remote stands, GPU are available for delivering electricity to the aircraft (owned and operated by the handling agents). There are only few air climate units (ACU) available. On all pier stands (piers A, B and E), fixed ground power systems for electricity and pre-conditioned air (AGES: aircraft ground energy systems) are available and energy is delivered to the aircraft by the handling agents immediately after on-block. Figure 14 Air Climate Unit (ACU) on the left and Ground Power Unit (GPU) on the right. AGES at Zurich Airport Page 15 von 33 Figure 15 Operational characteristics of APU / AGES usage The AGES are operated by the various handling agents. When an aircraft has reached the parking position, often with only one engine running, ground staff sets the chocks and attaches the aircraft to external power at the same time. As such it is not necessary for the aircraft crew to run the APU upon approaching the stand in order to timely shut down the main engines. The operation of the AGES is self-explanatory, although training is provided to ground handling staff by the technical maintenance department of the airport. Figure 16 Control panel on PLB for 400Hz and PCA (dual system layout for Code C, D, E) A passenger loading bridge mounted sensor is placed in the cabin interior to control the cabin temperature. Depending on the outside temperature, the cabin temperature can range from 21°C (winter) to 26°C (summer). At an outside temperature of +31°C the cabin temperature is +26°C, at an outside temperature of +21°C, the cabin temperature is +21°C. Figure 17 Placement of the temperature sensor. #### 4.3. System Performance The systems are owned and maintained by Flughafen Zurich AG as part of the core infrastructure of the airport. The technical availability of the system is >99% of all times. Any malfunctions are reported immediately to «Service 24» of Flughafen Zürich AG and repaired by technicians. Typical damages occur when 400Hz cable connectors or PCA hoses break. AGES at Zurich Airport Page 17 von 33 ## 5. Regulatory Framework ## 5.1. Environmental Regulations Air quality regulations in Switzerland stipulate that emission mitigation measures have to be implemented when national standards of air pollutants are exceeded. The standards usually in question and directly linked to emissions are nitrogen dioxide (standard: $30~\mu g/m^3$ annual mean) and PM10 (standard: $20~\mu g/m^3$ annual mean). Both standards are currently exceeded at various spots within the airport perimeter, but also in various regions of the country with dense population and industrial activities. By federal legislation, Zurich Airport is in most cases required to perform an environmental impact assessment (EIA) for infrastructure projects; this also includes an air quality assessment. Based on those results, Zurich Airport has to propose measures that reduce emissions which will then be included as mandatory measures into the permits by the federal aviation authority. In case of potential AGES, they are linked to aircraft related projects (e.g. runway, taxiway, apron/stands). Measures once enacted and implemented can usually not be lifted, even if the air quality situation improves and compliance is reached (prevention of slide back). ## 5.2. Aircraft APU Operational Restrictions In order to yield maximum benefits of the implemented measure and based on the Operating License for Zurich Airport, the use of auxiliary power units (APU) is subject to certain restrictions. These are laid down in the AIP LSZH, section AD 2 [1]. #### AIP SWITZERLAND¹ LSZH AD 2.21 #### 1.2 Auxiliary Power Units (APU) #### 1.2.1 All stands Primarily, the stationary airport pneumatic and electrical service units shall be used. Alternatively, mobile units shall be used. #### 1.2.2 The APU shall only be started: - to start the engine, but no earlier than 10 MIN before off-block time - if the stationary or mobile units are not available or unserviceable for specific aircraft types. In that case, the APU shall be started no earlier than: - 50 minutes before off-block time for aircraft Codes B and C - 70 minutes before off-block time for aircraft Codes D, E and F - 30 minutes before off-block time for GA sector 1 and kept in operation no more than 20 minutes after the on-block time. • if maintenance work on the aircraft makes it unavoidable; in that case the service period shall be kept as short as possible. Exceptions have to be permitted by the Airport Authority - ¹ 01 DEZ 2017 and AIRAC 07 DEZ 2017 ## 5.3. Airline Operational Instructions Some airlines establish additional and company based procedures for the usage of APU. These procedures can be dependent on aircraft type, actual take-off weight and characterisation of the airport (altitude, runway length, etc). One airline operating in and out of Zurich has set up the following procedures in an effort to contribute to environmental protection: #### 4. USE OF APU (...) - ACFT on hard stands: switch off APU when GND Power Unit (GPU) connected. - Terminal A/B: Preconditioned air and electrical power avbl. - Energy saving: The crew shall decide, depending on WX COND or technical requirements, whether air conditioning is required or not. Generally, the air conditioning system should be switched off with AOT of APRX 10°C to 25°C. The air conditioning system should also be switched off after PSGR have disembarked or before leaving the ACFT. AGES at Zurich Airport Page 19 von 33 #### 6. Environmental Assessment #### 6.1. AGES Benefits The combination of reliably providing electrical energy and pre-conditioned air, while at the same time mandating the airlines to use the systems when technically available, is the key to achieve maximum ecological benefits. Already the specific emission reductions are considerable when comparing the CO₂ emissions per hour of operation for an APU, a GPU and the fixed energy system. | | APU
kg CO₂/h | Diesel GPU
kg CO₂/h | 400 Hz
kg CO₂/h¹ | |--------------------|-----------------|------------------------|---------------------| | Shorthaul Aircraft | 337 | 19.1 | 0.7 | | Longhaul Aircraft | 758 | 38.2 | 1.2 | ¹Emissions from Swiss electricity production Table 10 Specific CO₂-emissions (kg/h) of APU, GPU and fixed electricity #### 6.2. Airport Emissions Airports are routinely calculating emission inventories and often do dispersion modeling for all airport induced emission sources. The current main guidance is ICAO Doc 9889 (Airport Air Quality Guidance Manual, 2011, [2]) which places all emission sources into one of four emission groups (aircraft, handling, infrastructure, land-side access traffic). APU are listed in the "aircraft" group. According to Doc 9889, more or less advanced/ sophisticated approaches are used to reflect also "real world" operations. Emission inventories often include the full ICAO certification LTO up to 3,000 ft. However, only emissions of the first 1,000 ft are actually relevant for the resulting concentrations at ground level. This has to be reflected in the modeling of the emission inventory as well as the dispersion modeling. The following table shows an example of such an inventory for Zurich Airport using advanced and sophisticated approaches for the year 2016 (269,160 aircraft movements, 27.7 Mio. passengers, 464,859 tons cargo). Results are provided for both the standard certification LTO as well as for the concentration relevant section of the LTO cycle. | | Perimeter Variation | | | | | |-------------------------------|---------------------|---|---|---|--| | Scenario | | • | rastructure, some landside a
U regime (with AGES and G | • | | | LTO cycle | | • | | Concentration relevant cycle (1,000 ft),
ADAECAM EF, real Taxi Times | | | Total airport NO _X | 1,455 t | 100% | 801.97 t | 100% | | | APU NOx | 17.25 t | | 17.25 t | | | | GPU NOx | 3.2 t | | 3.2 t | | | | APU + GPU NO _X | 20.45 t | 1.4% | 20.45 t | 2.5% | | Table 11 Zurich Airport and APU emissions 2016, share depending on the spatial perimeter The benefits of APU mitigation options (on the total airport emissions) are presented in the following table. There are three different scenarios modelled: - 1. There are no AGES available and power/PCA for the aircraft is produced by the aircraft APU only during ground time at the stand. - 2. Zurich Airport system: AGES (400Hz and PCA) available and utilised on Pier stands, 400Hz available and utilised on certain open stands during ground time (existing restrictions are applied). - 3. Maximum: all stands are equipped with AGES for both 400Hz and PCA and the APU is only used for main engine start (MES). | | Variation in operations (concentration relevant emission perimeter only) | | | | | | | |-----------------------------|--|-------|---|------|--------------------------------------|------|--| | Scenario | | | AGES / GPU as it is today at Zurich Airport | | APU for MES only (rest is AGES only) | | | | NOx 2016 | | | | | | | | | Total Airport 2016 (1,000m) | 909 t | 100% | 802 t | 100% | 786 t | 100% | | | APU | 128 t | | 17 t | | 5 t | | | | GPU | 0 t | | 3 t | | 0 t | | | | APU+GPU | 128 t | 14.1% | 20 t | 2.5% | 5 t | 0.6% | | | CO ₂ 2016 | | | | | | | | | APU | 50,066 t | | 7,896 t | | 2,131 t | | | | GPU | 0 t | | 1,050 t | | 0 t | | | | APU+GPU | 50,066 t | | 8,945 t | | 2,131 t | | | Table 12 Operational variations in APU usage for Zurich Airport 2016 #### 6.3. Regional NO₂ concentrations The following picture shows the dispersion of the APU NO₂ concentrations at Zürich airport for 2016 (with APU operations modeled as is, i.e. with available AGES/GPU and their use) and the total NO₂ dispersion from all airport related sources, compared to actual measured annual values (total, from all sources, also non-airport). AGES at Zurich Airport Figure 18 Regional NO₂ concentration (airport and APU) for Zurich Airport 2016 AGES at Zurich Airport Page 22 von 33 ## 7. Economics of the System ## 7.1. Aircraft Ground Energy System The required investments for 400Hz/PCA systems designed and implemented for Zurich Airport are between 340,000 Euros for a Code C gate and 1 million Euros for a Code F gate; the costs are about 30% for the 400 Hz systems and 70% for the PCA system. The costs generally vary depending on the required service level and the possibility to plan one comprehensive system rather than upgrading an existing 400 Hz system with PCA. The costs of service vary according to the services required and the handling agent providing the service. By way of information, the following table gives an overview of the service charges at Zurich Airport (as levied by the handling agent). | MTOW Class | Base tariff | Tariff per hour | | | | | | | |-------------|-------------|-----------------|--------|--------|--------|--------|----------|--| | WITOW Class | per usage | Hour 1 | Hour 2 | Hour 3 | Hour 4 | Hour 5 | Hour 6ff | | | Class 1-3 | 3.00 | | free | | | | 3.00 | | | Class 4 | 4.50 | | free | | | | 4.80 | | | Class 5 | 9.00 | | free | | | | 9.00 | | | Class 6 | 15.00 | | free | | | | 15.00 | | | Class 7 | 25.50 | | | free | | | 25.80 | | | Class 8 | 34.50 | | | | free | | 34.80 | | | Class 9 | 45.00 | | | | free | | 45.00 | | Table 13 400Hz prices in CHF at Zurich Airport (1.11.2017) | MTOW Class | Examples | Tariff per hour | |------------|-------------------|-----------------| | Class 1-3 | C182, C56X, LJ60 | 6.00 | | Class 4 | GALX, CL64, AT73 | 9.00 | | Class 5 | RJ85, CRJ9, GLEX | 18.00 | | Class 6 | A320, B737, CS100 | 30.00 | | Class 7 | B763, IL76 | 51.00 | | Class 8 | A333, B77W, B764 | 69.00 | | Class 9 | A388 | 90.00 | Table 14 PCA prices in CHF at Zurich Airport (1.11.2017) #### 7.2. Aircraft APU APU operating costs vary depending on the aircraft type, the APU type, APU fuel consumption and operating times as well as fuel price and other APU operating/maintenance costs. An approximation for fuel costs for APU operation only is given in the following table. The costs do not reflect any potential CO_2 compensation costs. | Aircraft | | | | Costs | | | |----------|----------|-------------|----------|------------|-----------|-------------------| | Туре | Stand | 400 Hz Time | PCA time | Total AGES | Total APU | Savings with AGES | | | | min | min | CHF | CHF | CHF | | B764 | Pier E | 240 | 120 | 172.50 | 712.00 | 539.50 | | B788 | Pier E | 300 | 180 | 276.00 | 890.00 | 614.00 | | A321 | Stands D | 80 | 80 | 55.00 | 146.67 | 91.67 | | B739 | Pier B | 210 | 60 | 270.00 | 385.00 | 115.00 | Table 15 Approximation of APU costs (in CHF/h) AGES at Zurich Airport Page 24 von 33 ## 8. Annex 1: Auxiliary Power Unit #### 8.1. Technical Issues Auxiliary Power Units are gas turbines mounted usually in the aft part of aircraft. Fuels used are Jet A, Jet A1, Jet B or JP-4. The purpose of an APU is to: - provide electrical energy (115V, 400 Hz) for aircraft systems during ground time; - provide air to the environmental control system (air-conditioning) during ground time; - provide air (bleed air) for main engine start; - serve as electric and hydraulic back-up system in flight; APU are available for large, medium, small jet aircraft, regional or commuter jet aircraft, corporate or business jets and turboprops (cf. annex). Emissions of APU are similar to those of aircraft main engines. The following pollutants are of interest for emission inventory and dispersion calculation purposes: | • | NOx | Nitrogen Oxides | |---|--------|--------------------| | • | HC | Hydrocarbons | | • | CO | Carbon Monoxide | | • | PM | Particulate Matter | | • | CO_2 | Carbon Dioxide | For dispersion calculations, the exhaust plume needs to be modelled, too. This requires additional data for exhaust nozzle diameter, exhaust gas temperature and exhaust gas velocity. Some limited information is available, e.g. - Allied Signal 331-500: Exhaust nozzle diameter: 38.11 cm (Utzig, 2004); - APS 500R APU: Max Continuous rated EGT: 704°C (Hamilton, 2004) - TSCP700-4E: Continuous EGT: 585°C (JAA, 1998). - Honeywell 36-150CX: Max. Continuous EGT: 665°C; Idle EGT: 300°C (HTG, 2004) Hamilton Sundstrand APS 3200 APU for A320 family Hamilton Sundstrand APS 500R APU for ERJ 135/140/145 Honeywell 36-150CX APU for Do328 Figure 19 Auxiliary Power Units for commercial aircraft ## 8.2. APU Modes of Operation APU are operated in different modes, according to the desired operation (e.g. generating electricity). There are currently a number of different terms used to describe particular APU operations (ICCAIA, 1999). | Term | Explanation | Idle
(no load) | Electricity
(400Hz only) | PCA
(air & 400
Hz) | Bleed Air
(engine
start) | |----------------------|---|-------------------|-----------------------------|--------------------------|--------------------------------| | No Load | same as Idle – no shaft or bleed load extracted – may be at 100% engine speed or reduced speed depending on the particular APU model. | Х | | | | | Combined Load | combination of shaft (electric) and bleed loads – bleed air could be for main engine starting (MES) or the environmental control system (ECS) – bleed air extraction could have been set to a specified corrected flow (ppm) or to a specified APU exhaust gas temperature (EGT). | | | X | X | | Max Combined
Load | combination of shaft and bleed loads, but engine is at the maximum EGT limit – test usually run by setting the shaft load to the maximum level, then extracting bleed air until the EGT limit is reached – load condition may be higher than an actual aircraft load condition. | | | X | X | | Bleed Load | bleed air extraction only, no shaft (electric) load – usually a part power condition – may not be representative of an actual aircraft operating condition. | X | | | | | Max Bleed
Load | bleed air extraction only, no shaft (electric) load – test usually run by extracting bleed air until the APU EGT limit is reached – load condition may be higher than an actual aircraft load condition – not an actual aircraft operating condition. | | | Х | X | | Max Shaft Load | shaft (electric) load only, no bleed air extraction – a part power condition – shaft load could be representative of an aircraft load condition, or set to the APU gearbox load limit. | | Х | | | | ECS | environmental control system – bleed air supplied to the aircraft air X conditioning packs – the bleed load condition is set for typical aircraft gate operation (depending on the aircraft type and size) - normally includes some shaft (electric) load. | | | | | | Max ECS | maximum environmental control system – bleed air supplied to the aircraft air conditioning packs – the bleed load is set for the maximum aircraft load condition – normally includes some shaft (electric) load. | Х | | | | | Max IGV | indicates the APU load compressor inlet guide vanes (IGVs) were set to the maximum, full open condition – usually this would be designated either a Max ECS or a MES condition – may or may not include shaft (electric) load. | X | | | Х | | MES | main engine start – bleed air supplied to the main engine air turbine starter – bleed load usually set to a specified corrected flow condition representative of typical aircraft operation – normally includes some shaft (electric) load. | X | | | Х | | MES+180KW | main engine start plus 180KW of electric load – same as MES, but the actual shaft (electric) load is specified for a particular aircraft. | | | | Х | Table 16 APU Terminology (ICCAIA, 1999) AGES at Zurich Airport Page 26 von 33 ## 8.3. Aircraft and Airport Operational Issues related to APU The interdependencies of aircraft APU operations are characterised in Figure 19. Figure 20 Characterisation of APU use. It has to be recognised that the operation of an APU is determined by the aircraft and the aircraft stand as well as applicable operational procedures at the airport (e.g. restrictions). #### 8.4. Aircraft Type The size of the aircraft often determines the stand allocation and the handling procedures. At Zurich Airport, all aircraft have been categorized into 8 groups. This grouping is used to attribute properties used to create and calculate emission inventories in a generalized manner. AGES at Zurich Airport Page 27 von 33 | Aircraft Group | Characterisation | |--------------------------------------|---| | Large Jet Aircraft | Handling mostly at pier or occasionally remote stands | | (B777, B787, B747, A340, A380) | APU available | | Medium Jet Aircraft | Handling mostly at pier or occasionally remote stands | | (A330, B767) | APU available | | Small Jet Aircraft | Handling at pier or remote stand | | (B-757, B-737, A319-A321) | APU available | | Regional Jet Aircraft | Handling mostly at remote stands | | (RJ-85, EMB-145, CL65) | APU available | | Turboprop Aircraft | Handling at remote stands | | (S20, DH8, AT42/72, D328) | Sometimes no APU available | | Business Jets | Handling at remote stands | | (Citations, Falcon, LearJet, Global) | APU available | | General Aviation Propeller Aircraft | No APU available | | (Piper, Cessna) | | | Helicopter | No APU available | Table 17 Aircraft group characterization #### 8.5. Aircraft Stand At airports, two types of aircraft stands can be found: - pier stands where a passenger loading bridge connects the aircraft to the building and - remote stands where an aircraft is parked free of direct building connections (for passenger and/or cargo operations). The stands themselves can show considerable differences in terms of place and technical equipment which can influence emissions from APU. | Properties | APU Consequences | Comments | | |--|---|--|--| | No electrical or pneumatic equipment | APU required for ground power, airconditioning and main engine start | Not in Zurich | | | Mobile GPU available | APU only required for air-conditioning and for main engine start-up | Common on remote stands | | | Stand equipped with fixed or semi-mobile 400 Hz | Does not require GPU; APU only required for air-conditioning and for main engine start-up | Common on stands with loading bridge and also on remote stands | | | Additionally equipped with PCA (stationary or through ACU) | Does not require GPU; APU required for main engine start-up only | Stationary equipment only together with 400 Hz | | Table 18 Properties of aircraft stands AGES at Zurich Airport Page 28 von 33 #### 8.6. APU Emission Calculation Methodology For emission inventory purposes and subsequent concentration modelling, Zurich Airport uses an APU-cycle that reflects APU operations in a simplified manner and that is used to build the model for the emission calculation (next table). | APU-Mode | Operations | Time in Mode | | |----------------------|--|--------------------------------------|--| | Idle | Idle operation | 3 min | | | Load (400
Hz/PCA) | Provides electricity when aircraft is on ground and in operations (e.g. pre-
flight) and provides pre-conditioned air (cooling or heating) if needed for
pre-flight (boarding) or post-flight (disembarking) activities; | as modelled | | | Bleed air | Provides necessary bleed air MES (main engine start); | 35 sec (shorth.)
140 sec (longh.) | | Table 19 APU-Operations and times (ICAO Document 9889) The turnaround times of all aircraft equipped with an APU are thus covered either by APU, GPU or fixed energy systems (GPSS). The model built for the emission inventory for Zurich Airport makes use of the available ambient information (temperature), operational data like aircraft turn-around times, total GPU operating times and the availability of the fixed energy system (AGES). This returns APU running times for both pier and remote stands, also reflecting the airport's APU operating restrictions and airlines' procedures. On remote stands, no GPSS is available, only GPU; in this case the APU times have been derived from the difference between the average turn-around time of the aircraft and the average GPU operating time per cycle. The APU/GPU/AGES times can vary annually, depending on the turnaround times of aircraft, the total GPU running time and the technical availability of the fixed energy system. The fuel flow data and emission factors are available from the ICAO Doc 9889 [2]. Initially, an airport APU database had been setup in 1994 with support of the manufacturers. This has been replaced in 2010 with the new information. Each aircraft type is been assigned an APU group model with information on fuel flow, HC, CO and NO_X emission indices for different operating modes. AGES at Zurich Airport Page 29 von 33 ## 9. Annex 2: Abbreviations ACFT Aircraft ACU Air Climate Unit AGES Aircraft Ground Energy Systems AHU Air Handling Unit AOT Ambient Outside Temperature APRX Approximate APU Auxiliary Power Unit ASU Air Starter Unit CHF Swiss Francs CO₂ Carbon Dioxide ECS Environmental Control System EGT Exhaust Gas Temperature GPU Ground Power Unit (diesel-operated) GSE Ground Support Equipment Hz Hertz ICAO International Civil Aviation Organization IGV Inlet Guide Valves KVA Kilovoltampere kW Kilowatt LTO Landing and Take-off Cycle (standard 4 modes) MES Main Engine Start NOx Oxides of Nitrogen NO₂ Nitrogen dioxide MWh Megawatt-hours PCA Pre-conditioned Air PLB Passenger loading bridge PM Particulate matter PSGR Passengers V Volts WX COND Weather Conditions # **Figures** | Figure 1 | Zurich Airport aircraft piers and hard stands: Piers E, A, B and open stands P, C, and G | 4 | |-----------|--|----| | Figure 2 | Basic layout of aircraft ground energy systems (AGES) | 5 | | Figure 3 | Transformer (left) and control panel (right). | 6 | | Figure 4 | Hose for pre-conditioned air at pier A. | 7 | | Figure 5 | Hose for pre-conditioned air at pier B. | 8 | | Figure 6 | Cable and hose coils (left) and 400Hz transformers (right) | 9 | | Figure 7 | 400Hz monitoring panel | 10 | | Figure 8 | Hose for pre-conditioned air (left) and central PCA plant (right) | 11 | | Figure 9 | Chiller | 11 | | Figure 10 | Control panel for pre-conditioned air (left) and analysis chart. | 12 | | Figure 11 | 400Hz system open stands "Charlie" | 13 | | Figure 12 | 400Hz system open stands "Papa" Eastern Part. | 14 | | Figure 13 | 400Hz pit system open stands "Papa" Western Part. | 14 | | Figure 14 | Air Climate Unit (ACU) on the left and Ground Power Unit (GPU) on the right. | 15 | | Figure 15 | Operational characteristics of APU / AGES usage | 16 | | Figure 16 | Control panel on PLB for 400Hz and PCA (dual system layout for Code C, D, E) | 16 | | Figure 17 | Placement of the temperature sensor. | 17 | | Figure 18 | Regional NO ₂ concentration (airport and APU) for Zurich Airport 2016 | 22 | | Figure 19 | Auxiliary Power Units for commercial aircraft | 25 | | Figure 20 | Characterisation of APU use. | 27 | | | | | | Tables | | | | Table 1 | Ways of providing energy to the aircraft during ground times | 3 | | Table 2 | Technical and operational information 400 Hz Pier A | 6 | | Table 3 | Technical data PCA Pier A | 7 | | Table 4 | Technical and operational information 400 Hz Pier B | 8 | | Table 5 | Technical data PCA Pier B | 9 | | Table 6 | Technical and operational information 400 Hz Pier E | 10 | | Table 7 | Technical data PCA Pier E | 12 | | Table 8 | Technical data Open Stands "Charlie" | 13 | | Table 9 | Technical Data Open Stands "Papa" | 13 | | Table 10 | Specific CO ₂ -emissions (kg/h) of APU, GPU and fixed electricity | 20 | | Table 11 | Zurich Airport and APU emissions 2016, share depending on the spatial perimeter | 20 | | Table 12 | Operational variations in APU usage for Zurich Airport 2016 | 21 | | Table 13 | 400Hz prices in CHF at Zurich Airport (1.11.2017) | 23 | | Table 14 | PCA prices in CHF at Zurich Airport (1.11.2017) | 23 | | Table 15 | Approximation of APU costs (in CHF/h) | 24 | | Table 16 | APU Terminology (ICCAIA, 1999) | 26 | | Table 17 | Aircraft group characterization | 28 | | Table 18 | Properties of aircraft stands | 28 | | Table 19 | APU-Operations and times (ICAO Document 9889) | 29 | AGES at Zurich Airport Page 31 von 33 ## **Sources** | No. | Document Name | | | | | | |------|---|--|--|--|--|--| | [1] | AIP, 2017: Aeronautical Information Publication Zurich Airport. Flughafen Zurich AG, Zurich, 2017. | | | | | | | [2] | ICAO: Local Air Quality Guidance Manual, ICOA Doc. 9889 (1st Edition, 2011). | | | | | | | [3] | Flughafen Zürich AG: Emission Charges Zurich Airport. Review 2003. Zurich, 2003 | | | | | | | [4] | Flughafen Zürich AG: Energy Management Zurich Airport. Zurich, 2005 | | | | | | | [5] | Flughafen Zürich AG: Aircraft APU Emissions at Zurich Airport. Zurich, 2005 | | | | | | | [6] | Hamilton, 2004: http://www.hs-powersystems.com/2190600_web.pdf | | | | | | | [7] | Honeywell, 2000: Letter to US EPA by Honeywell; Phoenix, 29 September 2000 | | | | | | | [8] | HTG, 2004: http://thermlab.web.arizona.edu/projects/gas_turbine_instruction.html | | | | | | | [9] | ICCAIA, 1999: Letter to Airport Authority Zurich from ICCAIA; Seattle, 19. August 1999 | | | | | | | [10] | JAA, 1998: JAA/25/91-001, Issue 6, 28 May 1998 | | | | | | | [11] | Utzig, 2004: Untersuchung der geometrischen Form und Ausbreitung von Abgasfahnen von Flugzeu-
gen mittels abbildender FTIR-Spektroskopie. Selina Eva Utzig, Diplomarbeit Fachhochschule
Bingen, Deutschland, Dezember 2004. | | | | | | | Version | Date | Name | Modifications | |---------|---------|--------|---------------| | 1 | 02.2009 | Fleuti | | | 2 | 12.2013 | Fleuti | | | 3 | 02.2018 | Ruf | | AGES at Zurich Airport Page 32 von 33 Authors: Emanuel Fleuti, Christian Ruf Division/Unit: Recht&Umwelt/Umweltschutz